• 金年会·(jinnianhui)金字招牌诚信至上

    逆境模拟及植物生长监测系统PlantArray
    日期:2017-11-15 13:25:59

    逆境模拟及植物生长监测系统 PlantArray

                                                   

    image.png


    逆境模拟及植物生长监测系统是一套高通量,以植物生理学为基础的高精度表型系统,可以完成整个植物生长周期中不同环境下的SPAC因子的测量。连续不间断的获取阵列内所有植物的监测数据,实时监控和及时调整每个培养容器中的土壤条件,包含土壤水分、盐分。

    image.png

    Israeli Center of Research Excellence facility in Rehovot


           逆境模拟及植物生长监测系统的主要优点:


    生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;

    连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);

    理想的实验平台:

    全自动;

    均一检测;

    适用于不同类型植物;

    精确测量;

    非破坏性;

    实现随机分组实验设计;

    3-4周的实验相当于4-6个月的人工工作;

    操作简单,维护费用几可忽略;

    灵活的设计能够满足任何温室中不同方面的科学研究需求。

    实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;

    实验目的-在实验运行中为了确保处理的效果可以获取优化的实验参数;

    快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;

    复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。


    image.png


           逆境模拟及植物生长监测系统的应用领域:


    非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;

    在农作物、蔬菜、树木、药用植物、燃料作物等方面的育种研究;

    根系的土壤穿透力、水通量研究;

    生物激素与养分研究;

    生理生态学研究等。


          测量参数:

    直接测量参数:



    重量

    空气湿度

    空气温度

    辐射(PAR)

    气压

    土壤水分

    土壤电导率

    土壤温度

    日蒸腾

     


    计算参数:



    植物生物量增益

    日蒸腾

    水分利用效率

    气孔导度

    抗胁迫因子

    水分相对含量

    根穿透力

    根系水通量

    VPD



          逆境模拟及植物生长监测系统的技术参数:


    l  PIU单元含有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;

    l  德国高精度称重模块,最大测重量50kg(测量范围根据具体配置而定),测量精确度±0.02%称重量;

    l  植物生长容器满足多种植物的生长需求,容积1.5-60L,具有防漏水、溅水设计;

    l  可以根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用以色列精准的滴灌系统控制,能够精确的控制浇水、施肥或施加生物激素的量;

    l  土壤类、气象类传感器选择美国高精度传感器测量土壤含水量、温度、电导率,空气温湿度、PAR、气压等参数;

     

          应用案例


    生物刺激剂在充分灌溉和干旱条件下对甜椒的定量研究


    image.png

                                                                                                                                                                  

     

    image.png


     

    image.png



    代表文献:


    1. Alemu, M. D. et. al., (2024) Dynamic physiological response of tef to contrasting water availabilities Front. Plant Sci. Frontiers. DOI: 10.3389/fpls.2024.1406173,

    2. Paul, M. et. al., (2024), Precision phenotyping of a barley diversity set reveals distinct drought response strategies Front. Plant Sci. Frontiers. DOI: 10.3389/fpls.2024.1393991,

    3. Jiang. R. et. al., (2024) Leveraging "golden-hour" WUE for developing superior vegetable varieties with optimal water-saving and growth traits Vegetable Research. DOI: 10.48130/vegres-0024-0001

    4. Dewi, E.S. et al. (2023) Agronomic and Physiological Traits Response of Three Tropical Sorghum (Sorghum bicolor L.) Cultivars to Drought and Salinity Agronomy, 13(11), p. 2788. DOI: 10.3390/agronomy13112788.

    5. Kahit Itzhak, et. al., (2023) Sounds emitted by plants under stress are airborne and informative Cell. DOI: 10.1016/j.cell.2023.03.009

    6. Yaara, A. et. al., (2023) Leaf hydraulic maze: Abscisic acid effects on bundle sheath, palisade, and spongy mesophyll conductance. Plant Physiology. DOI: 10.1093/kiad372

    7. Fang, P. et. al., (2023) Understanding water conservation vs. profligation traits in vegetable legumes through a physio-transcriptomic-functional approach Horticulture Research, DOI: 10.1093/hr/uhac287

    8. Negin, B. et. al., (2022) Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering New Phytologist DOI: 10.1111/nph.18615

    9. Markovich, O et. al., (2022) Low Si combined with drought causes reduced transpiration in sorghum Lsi1 mutant Plant Soil DOI: 10.1007/s11104-022-05298-4

    10. Mishra R. et. al., (2021) Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants Molecular Plant Pathology DOI: 10.1111/mpp.13172

    11. Shahar Weksler et. al., (2021) Continuous seasonal monitoring of nitrogen and water content in lettuce using a dual phenomics system Jornal of Experimental Botany DOI: 10.1093/jxb/erab561

    12. Xinyi Wu. et al. Unraveling the Genetic Architecture of Two Complex, Stomata-Related Drought-Responsive Traits by High-Throughput Physiological Phenotyping and     GWAS in Cowpea. Frontiers in Genetics, 743758(2021)

    13. AK Pandey. et al. Functional physiological phenotyping with functional mapping: a general framework to bridge the phenotype-genotype gap in plant physiology. iScience, 102846(2021).

    14. Yanwei Li. et al. High-Throughput physiology-based stress response phenotyping: Advantages, applications and prospective in horticultural plants. Horticultural  Plant Journal (2020)

    15. Weksler, S. et al. A Hyperspectral-Physiological Phenomics System: Measuring Diurnal Transpiration Rates and Diurnal Reflectance. Remote Sensing 12, 1493 (2020).

    16. Illouz-Eliaz, N. et al. Mutations in the tomato gibberellin receptors suppress xylem proliferation and reduce water loss under water-deficit conditions. Journal of Experimental Botany (2020).

    17. Dalal, A. et al. A High Throughput Gravimetric Phenotyping Platform for Real Time Physiological Screening of Plant Environment Dynamic Responses. bioRxiv (2020).

    18 . Yaaran, A., Negin, B. & Moshelion, M. Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response. Plant Science 281, 31-40, doi:http://doi.org/10.1016/j.plantsci.2018.12.027 (2019).

    19 . Illouz-Eliaz, N. et al. Multiple Gibberellin Receptors Contribute to Phenotypic Stability under Changing Environments. The Plant Cell 31, 1506, doi:10.1105/tpc.19.00235 (2019).

    20 . Gosa, S. C., Lupo, Y. & Moshelion, M. Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support pre-breeding and plant stress physiology studies. Plant Science 282, 49-59, doi:http://doi.org/10.1016/j.plantsci.2018.05.008 (2019).

    21 . Dalal, A. et al. Dynamic Physiological Phenotyping of Drought-stressed Pepper Plants Treated with'Productivity-Enhancing’and'Survivability-Enhancing’Biostimulants. Frontiers in Plant Science 10, 905 (2019).

    22 . Dalal, A. et al. A High-Throughput Physiological Functional Phenotyping System for Time-and Cost-Effective Screening of Potential Biostimulants. bioRxiv, 525592 (2019).

    23 . Galkin, E. et al. Risk‐management strategies and transpiration rates of wild barley in uncertain environments. Physiologia plantarum (2018).

    24 . Yaaran, A., Negin, B. & Moshelion, M. Role of guard-cell ABA in determining maximal stomatal aperture and prompt vapor-pressure-deficit response. bioRxiv, 218719 (2017).

    25 . Nir, I. et al. The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure. The Plant Cell, tpc. 00542.02017 (2017).




    以色列    Plant-Ditech

    收 藏
    上一篇:表型案例
    友情链接: